Strong convergence in a product space

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Applications of Strong Product

Let G and H be graphs. The strong product GH of graphs G and H is the graph with vertex set V(G)V(H) and u=(u1, v1) is adjacent with v= (u2, v2) whenever (v1 = v2 and u1 is adjacent with u2) or (u1 = u2 and v1 is adjacent with v2) or (u1 is adjacent with u2 and v1 is adjacent with v2). In this paper, we first collect the earlier results about strong product and then we present applications of ...

متن کامل

Strong Convergence Theorems for Infinitely Nonexpansive Mappings in Hilbert Space

Let C be a nonempty closed convex subset of a Hilbert spaceH, T a self-mapping of C. Recall that T is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖, for all x, y ∈ C. Construction of fixed points of nonexpansive mappings via Mann’s iteration 1 has extensively been investigated in literature see, e.g., 2–5 and reference therein . But the convergence about Mann’s iteration and Ishikawa’s iterati...

متن کامل

Strong $I^K$-Convergence in Probabilistic Metric Spaces

In this paper we introduce strong $I^K$-convergence of functions which is common generalization of strong $I^*$-convergence of functions in probabilistic metric spaces. We also define and study strong $I^{K}$-limit points of functions in same space.

متن کامل

Strong convergence of modified noor iteration in CAT(0) spaces

We prove a strong convergence theorem for the modified Noor iterations‎ ‎in the framework of CAT(0) spaces‎. ‎Our results extend and improve the corresponding results of‎ ‎X‎. ‎Qin‎, ‎Y‎. ‎Su and M‎. ‎Shang‎, ‎T‎. ‎H‎. ‎Kim and H‎. ‎K‎. ‎Xu and S‎. ‎Saejung‎ ‎and some others‎.

متن کامل

On global (strong) defensive alliances in some product graphs

A defensive alliance in a graph is a set $S$ of vertices with the property that every vertex in $S$ has at most one moreneighbor outside of $S$ than it has inside of $S$. A defensive alliance $S$ is called global if it forms a dominating set. The global defensive alliance number of a graph $G$ is the minimum cardinality of a global defensive alliance in $G$. In this article we study the global ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1962

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1962-0137979-8